A Mesoscale Diffusion Model
in Population Genetics with

Dynamic Fithess

Mike O’Leary

Towson University

Judith R. Miller

Georgetown University




/ The Discrete Model \

e Consider a single haploid panmictic population of

constant size /N with n diallelic loci.

e Suppose that the two alleles at locus
ie€{l,...,n}are A; and a;.

e The effect of allele A; is greater than the effect of

allele a;.

e \We assume that the difference in phenotype
between A; and q; is (), and that this is constant

across loci.

e We assume strict additivity, so that dominance and

epistasis are absent.




/ The Discrete Model \

e Let the fraction of the population with allele A; at

locus 72 be denoted by ;.

e The population phenotypic mean is then

p=3" (G + (1 - 2)(-Q)]

—zf;(xi—%)@

up to a constant.

e We assume that the environment has a most fit
phenotype 7, and that there is a fitness function of

the form
F(r) = emrlr—ra’

which gives the relative fithess of a phenotype 7.

. /
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The Discrete Model \

Given the population in one generation, we want to
find the probability p; that an individual in the next
generation will contain allele A;.

Clearly, p; o< x;.

In addition, p; is proportional to the average fitness
of the population that carries A;.

The average phenotype (i, of the population that
carries the allele A; is p; = p+ (1 — Q) ;.

The average phenotype v; of the population that
carries the allele a; is v; = u — Qx;.

Now p; X x; and p; X ;. On the other hand,
because the population size is fixed at /V, we also
know (1 —p;) o< (1 —2;) and (1 — p;) x v;. Thus

rif (p+ (1 —2)Q)
rif(p+ (1 —2;)Q) + (1 — ) f(pn — xz@

Pi —
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The Discrete Model \

We could try to track each individual locus; this
results in a set of n nonlinear equations (one for
each locus), and little useful information can be

extracted when n is large.

Rather than track each individual locus, we want to
look at the limit when n — oo, N — 00, and time

becomes continuous.

We introduce the variable ¢(x, t), chosen so that

/ab ¢(x,t) dox

represents the fraction of loci whose allele frequency

is between a and b.

This yields a mesoscale model that no longer tracks

/

the behavior of each individual locus.




/ The Meoscale Model \

e These models were initially developed by Richard
Hamilton, Judith Miller, and Mary Pugh.

— They have studied these models from a numerical

and from a formal asymptotic point of view.
— Model development continues.
e These models can be used to answer biologically
relevant questions:
— How fast does the trait mean approach optimal?
— At what rate are alleles fixed in the population?
e The problem is that basic mathematical questions-

like whether or not the model has a solution- have

not yet been answered.

. /




/ The Continuous Model \

e We analyze the general system of equations of the

form
o =—(Mp)s+ 5(VO)aa
where
M = M(z,t,R) = z(1 —x)m(x,t, R),
V=V(zx,t,R) =z(1 —x)v(x,t, R).

e The function R(t) is defined by

2
where
Ralt) = =5 [ (V0).(0.) ds+ Ra(0)
Ri(t) = —2/0 (V)u(L.s) ds + Ry (0).

R(t) = / (2 — Do(a,t) de + Rot) + Ru(t)

/
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Features of the Problem \

e The problem is highly nonlinear.

— The coefficients of the equation A/ and V' both

depend on IR, which depends on the solution ¢.

— Moreover, R also depends on the coefficient
and so even if ¢ were known, there is still no

closed form expression for M or V.

e The problem is also non-local, as the coefficients M

and 1/ depend on an integral of ¢.

° R(t) represents the (suitably scaled) trait mean of

the population.

e Ry(t) and Ry (t) represent the effect of fixed loci on

.

the trait mean.

/
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The Resulis

e This problem has a solution.

e The solution is unique.

e The system is stable under perturbations of the

initial data.




/ The Spaces B, \

e By = {1 measurable on [0, 1] : (w,wzo < oo}
where

(6,0, = / 2(1— ) d
0
e B ={v € By: (1, ¢>1231 < oo} where
(@, ¥) g, = (D, V),
1
+ / z(1 — 2)¢|.|x(1 — 2)¢|, dz.
0
e By ={vYeB: (¥ ¢>2Bz < oo} where
<¢7 ¢>B2 — <¢7 w>Bl

¥ / o(1 - 2)fa(l — )¢

- /




/ Hypotheses: Coefficients

(H1) The functions
(x,t, R) — m(x,t, R)
(x,t, R) — v(x,7, R)

are continuous.

(H2) For any v > 0, there exist constants
C(7v),C'(y) > O sothat for | R| <  and for any
0<z<landt >0

v(z,t, R) > C'(7),
V| + [vg| + |Vee| + M| + |ma| < C(y),
img| + |vr| + |vRs| < C(7).

(H3) There are nonnegative integrable functions

M (t) and M5(1) so that
sup |M(x,t, R)| < My(t) + Ma(t)|R)|.

\\\ 0<z<1

~




/ Hypotheses: Initial Data \

e Oy € Dy,

e ¢o(x) > 0 for almost every ,
e Ry(0)and R{(0) are given, and

e [ > (is given.




/ Theorem 1: Existence \

e Then there exists a function ¢(x, t), so that

¢ €C((0,T); B1)

M L2<O7T7 BQ)

2 Oa([oa T)7 LP(07 1))

NC((0,1) x [0,T))
forany 1 < p <2, forany 0 < a0 < ]lo — %

e There exist functions Ry(t), R1(t) so that

Ry, R, € Cﬁ[O,T)

forany 0 < 8 < %

e Define

R(t) = /O (z — Dp(a,t) da + Ro(t) + Ry (t).

Then R € C[0,T).
N Y,




/ Theorem 1: Existence

e Then
b = —(Mo)s + 5(V)u
as elements of Lo(0,7"; By).

e Further,

lim (., t) = o ()

t10

with the limit taken strongly in 3.

e Set

v(x,t) = /0 (V@)u(x,s) ds.

Thenv € C*([0,7T); Cl_%[(), 1]) for any

I1<p< 2andany0<a<}%— % Further
Ry(t) = Ro(0) —
Ri(t) = R1(0) —

v(0,1),
v(1,1).

N N




/ Theorem 1: Existence

e There is a constant C' depending only on 7" and
initial data so that

0<t<T

H¢HC%([O,T>;BO) S O H¢OHBl )
Sup ||¢('7t)”Bl + H¢’|L2(O,T;Bg) <C H¢0”B1

0<t<T

e Forallz € (0,1)andforall 0 <t < T we have

1 1
‘¢(£E7t)| < C max (\/57 m) H¢0’|Bl .

o Forany1§p<2andany0<a<%—

D=

“¢|’C@([0,T);Lp(o,1)) <C ”¢0H81 )

< .
1) o - oy S € N0l

\ where (' also depends on p and «.

Sup Hgb('vt)”Bo + HngL2(O,T;B1) <C HCbOHBo

~

)

/




/ Theorem 1: Existence \

e Further,forany 0 < ( < %

|Rollgspo.) + [1Billcson < C lloolls,

where (' also depends on (5.

e Moreover, > 0,andforany 0 <t <ty < T

1 1
/ ¢($, t2) dx < / ¢($, tl) dzx.
0 0

e Finally

RO < [IRO) -+ o0l 0, [ o) ds|

~ (4
exp "¢O“L1(0,1)A /\/12(8) dS]

and

R(ty) — R(ty) = /t : /0 Mo da dt

. /
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Theorem 2: Uniqueness and Stability

Let ¢, ¢* € C((0,T; B1) N L2(0, T Ba).

~

Let Ry, R, Ry, Rf € C[0,T).
Define

R(t) = / ( — Do(a.1) + Ro(t) + Ry(0)
R (1) = / (= 1) (@, ) + Ry(t) + Ri()
Define

M = M(x,t, R(t)),
M* = M(x,t, R*(t),
V =V(x,t,R(t))
V*=V(x,t, R*(t)).

)




/ Theorem 2: Uniqueness and Stability \

® Suppose that
¢}t=0 — ¢0 < Bl7

R(t) — R(0) = /Ot/()qus du dt,

\

and

R(t) — B*(0) :/Ot/OlM*gb* du dt,

\

o |f
Ro(0) — R1(0) = Ry(0) — 11(0)
b0 = &

\_ then¢” =0, J




/ Theorem 2: Uniqueness and Stability \

e There is a constant C' depending only on initial data
and 1’ so that

w [ ol —a)(6— &) do

0<t<T

t [ [ w006z dea

1
<C / v(1— 2)(do — 65)? da
0




/ Theorem 1: Sketch of Proof \

Theory of the spaces By, B, and Bs.

e C3°(0,1)isdensein By.
e If p € D1, then
(1l —x)p € V(E/%(O, 1).
Further ¢ has a continuous representative with
2(1—2)p € Cz[0, 1]

so that

21(1 — 21)d(21) — 22(1 — 22)@(22)]

1

<fo =il ([l - otz ar)

. /
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\o C§°(0,1) is dense in B;.

Theorem 1: Sketch of Proof \
Theory of Bj.

e Let » € By;then

wp o1 = 2)(a) <2 oL = 262 dy

x€[0,1]

e Letp € By;thenforany 0 <z < 1

o)l < 2max (L) ol

e Forany 1 < p < 2,

Blc—>Lp

and there exists a constant C' = C'(p) so that if
¢ c Bl then

Ioll., < Cliolls, -




/ Theorem 1: Sketch of Proof \

Representation Theorem for Bs.

e Suppose that » € B5. Then

(@) =~ | Glan)ly =)ol iy
where
Glay) =TT TS
(2 =1y x>y

is the Green’s function for the problem )" = 0,

1h(0) = (1) = 0.

1

G(X, §)

0.2 0.4 0.6 0.8 1
0. 05/

-0. 1}

- 0. 15¢

N /




/ Theorem 1: Sketch of Proof \

Theory of Bs.

e \We have the embedding
3
B2 — CI020<07 1)

e Let » € By;then
1
/ r(1 — )¢* dx
0

< / v(1— 2)[e(1 - 2)g]%, dr,

and

[ tet1 - e

< 8/0 (1 —2)[z(1 — 2)¢|%, dr.

\0 C'*°|0, 1] is dense in Bs. /




/ Theorem 1: Sketch of Proof \

The Elements of By, B1, and Bs.

e It is easy to check that, for monomials f(z) = aP
- P e Byiffp > —1,
- aP € Byifftp > —1/2, and
- aP € Byiffp > 0.

e As a consequence you might expect that if ¢ € Do,

then [z(1 — x)¢p(z)], — Oasz — Oorx — 1.

e This is important because V' = x(1 — x)v(z, t, R)

and
Ralt) = =5 [ (V6).(0.5) ds + Ro(0
1

:_Z/o (v (1 — 2)6),(0, 5) ds + Ro(0).

. /




/ Theorem 1: Sketch of Proof \

The Elements of By, B1, and Bs.

e Let ( € C*°|0, 1] be a smooth cutoff function

e Then

f(x) = (@) I'(p+1,—Inx)

(1l —x)

is an element of B>, but

lifg[x(l —x) f(z)], = +o0.

o Here I'(a,z) = [ t*'e™" dt is the incomplete

\ gamma function. /




/ Theorem 1: Sketch of Proof \

Compact Embeddings of B;.

e The embedding B — B is compact.

e The embedding B — L,(0, 1) is compact.
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Theorem 1: Sketch of Proof
Eigenfunction Decomposition of By and 5.

There exists a sequence of eigenvalues A\ and

eigenfunctions ¢;, so that:

The sequence Ay is increasing with A\, — 00,
¢r € By,
—z(1 = z)on]" = A,

The set { ¢ } 72, is an orthonormal basis for By,

and

The set { ¢ } 72, forms a basis for B;.

~




/ Theorem 1: Sketch of Proof
The Approximating Problem.

e Let’/' > 0, and choose

¢ € C([0,T); L1(0,1)),
Ry, R, € C[0,T).

e Define

~

e There is a constant

WZWOM

so that | R(t)| < 7.

’ R07R1

C([0,T);L1)

5

.

R(t) = /O (x — 1) d(a.t) dz + Ro(t) + Bu(t)

~




/ Theorem 1: Sketch of Proof
The Approximating Problem.

e Consider the approximating problem

gb‘tzo = Po(z).

e \We need to show that:
— This problem has a solution (¢, Ry, R1), and

— The resulting map

S: (gga R07R1) — (Qb, ROaRl)

has a fixed point.

~




/ Theorem 1: Sketch of Proof \

The Approximating Problem.

e Choose ¢g with || || 5, < 0o.

e Then there exists a unique function
Qb < C([O, T), BQ) M LQ(O, T, Bl)
so that

¢}t:O = Po().

e Moreover there is a constant C' = C'(y,T") so that

1
sup / r(1 — 2)¢* dx
0

0<t<T

T [l
_ 2
+/O /O[x(l x)@|Z dx dt

. /




/ Theorem 1: Sketch of Proof \

The Approximating Problem.

e Further, if ||o|| 5, < 00, then
Qb < C([O, T), Bl) M LQ(O, T, BQ)

and

[ 11~ )0l da

0<t<T

1
+/T/ (1 — 2)z(1 — )12, du dt

0 0
<C H%HQ&

where again C' depends only on v and 7.




/ Theorem 1: Sketch of Proof \

Regularity of the Approximating Problem Depending on +.

o 2(1— )¢ € C([0,T);Cz[0,1]),
o ¢ € Cre((0,1) x [0,T)),
o ¢, € Ly(0,T; By).

e There is a constant C' depending only on v and 7T’
so that

sup |@(x, )

0<t<T

1 1
< Omax (2.~ louls,

e Forany 1l < p < 2, there is a constant C
depending only on y, 1" and p so that

Sup H¢(°7t)HLP(O,1) <C ”%HBl ‘

0<t<T

. /




/ Theorem 1: Sketch of Proof \

Regularity of the Approximating Problem in Time

e ¢ € CV%([0,T); By) and
[6(-12) = ¢( 1)l 5, < Clta = 1|2 [ B0l 5, -
for C'=C(v,T).
e 9 € C*([0,T); Ly) and
[o(t2) — @(- t1)ll, < Clta —ta|* [ doll 5,

forany 1 < p < 2,andany 0 < « <%—%,where
C=C(v,T,p,a).




/ Theorem 1: Sketch of Proof \

Regularity of Boundary Terms for the Approximating Problem

e Define v(x,t) = /0 (V@)u(z,s) ds.

e Thenv, vy € Lo(0,T; Ly) and

0<t<T

L2(0,1) }

< Cll¢ollg,

Ov
sup {||V(°7t)L2(O,1) + HE(’t)

for C' = C(~,T).

e Further 8_ e C*(|0,T); L,) and

H 1) — —( )| < Clta—t1|* [[doll 5, -

Lp

forany 0 < o < Zl) — %whereC’ =C(v,T,a,p).

. /




/ Theorem 1: Sketch of Proof \

Regularity of Boundary Terms for the Approximating Problem

o v C0,T);C7[0,1]) and

v (xg,t0) — v(xy, 1)

_1
< C{lt— 11" + oz — | 160l

for any 1 §p<2andany0<0z<%—%where
C=CH,T,a,p).

e Finally, v(0,t),v(1,t) € CP[0,T) with

v(0,t5) — v(0,t1)] < Clta — t1]” || ol 5,
v(1,ts) — v(1,t1)] < Clta — t4]” || ol 5,

forany 0 < t; < ts <Tandany0<ﬁ<%
where C' = C'(v, T, 3).

. /




/ Theorem 1: Sketch of Proof
The Maximum Principle

e Forany 0 <t; <ty <.

1 1
+ d < +
/() ¢ (ilf,tg) L >~ /0 Qb ([C,

Proof Sketch: Use the test function

B r(1 — x)op*
V= j:x(l — x)pF + €

tl) dx

on an interval [a, b] CC |0, 1]. Then the last term is

estimated

(1 — 2)¢*
/ /‘v¢m 1_xwi+€m¢t

_ r(1 —z)p*
j:/ (Vo)s r(l —x)p* + ¢

dt

/ / (V™) 1—1521@@

dx dt.

~




/ Theorem 1: Sketch of Proof \

The Maximum Principle

However V' = x(1 — z)v, so
j: 1—5'3)¢i]
/ /ng 1—x)gbi+e) dx dt
z(1 — z)o*];
/tl / 1_$¢i+€) dx dt
// 1—x)¢i+e> it

Thus for almostevery 0 < a < b < 1

b t=t2 t, pb
/ oF dx < / / (Mo, dx dt
a . 11 a

+ / " Vo)l > 0] dt

t
1 r=a

. /




/ Theorem 1: Sketch of Proof \

The Maximum Principle

3
o ¢ € Ly(0,T5 By) — L(0,T5C(0,1)), so
+(V ). x[¢F > 0] is defined for all z, but it need

not be continuous.

e Define pi(z) = / 2(ngj[)(:zj,t) dt.

t1
e Now p& € W(0,1) — C=[0, 1]; indeed
H:LLiHW21(0,1) <C H¢HL2(0,T;31)-
e y(x) > 0and u(0) = u(1) = 0; indeed
o
n*(x) = / vr(l — x)o™ dt

t1

1 1
< Catt-apmax (.~ ) Wolyorm

. /
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Theorem 1: Sketch of Proof
The Maximum Principle

e Then forany 0 > 0

meas{z € (0,0) : u=(z) > 0} > 0 and
meas{z € (1 —4,1) : u>(z) <0} > 0.

e As a consequence, we can find sequences a,, | 0

and b,, T 1 so that

8 / tQ(Vqﬁ)xx[aﬁi > 0] dt > 0

t1

+ /tZ(ng)xX[gbi > 0] dt < 0.

t1

e Thus

.

/1 oF(z,t) do <0. W
0

~
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Theorem 1: Sketch of Proof \
Estimates of R(t)

e Make the definitions

so that

R(t) =

Ro(t) = Ro(0) — iu((),t)

Ry(t) = Ry (0) — i”(”)

/o (x — 3)¢(x,t) dz + Ro(t) + Ri(t).

e Use (x — 1/2) as a test function to find that

R(ty) — R(ty) = /t : /0 Mo d dt




/ Theorem 1: Sketch of Proof \

Estimates of R(t)

e Applying (H3) and the fact that

o€ Ly 0.0) < lloll Ly 0,y

we find

ROI< 1RO+ 0 [ MiGs)ds|

t
+ l1#oll 1, 0.1) /O My (s)|R(s)] ds.

e Thus
R(t)] < [!R(OH + H%“LNO’”/O M dS]
exp [||¢0||L1(0,1)/0 Ma(s) dS] |

. /




/ Theorem 1: Sketch of Proof \

Compactness of the Solutions

e Suppose that
= {@ntnzy C C([0,T); B) N C([0,T); Ly)

~ sup [|gn(- 85, <C
0<t<T

- H¢n(;t2) o ¢n(’;t1)HL1 < C‘tQ o tl’a

for0 < a < % and a constant C' independent of n.

e Then there is a subsequence {¢, }52, and a
function ¢ € C'*(|0,T); L1) so that

”¢n](7t) o qb('at)HLl — 0
uniformly for t € [0, 7).

o [fax = % then the conclusion holds true with By in

place of L.

. /




/ Theorem 1: Sketch of Proof \

The Fixed Point

e Define

U = C([0,T): Ly (0,1)) x C[0,T) x C[0,T).

e Consider the function § : I — U defined by the

rule
(6, Ro, R1) = (¢, Ro, Ry)

where ¢, R, and R, are the solutions to the

problem

~

R(t) = /O (x — 1) d(a.t) do + Ro(t) + Bu(t)




/ Theorem 1: Sketch of Proof \

The Fixed Point

e The function § : Y4 — U is continuous.
e The function § : Y4 — U is compact.

e The set

forsome 0 <o <1

{(Cb, Ry, R) €U

(¢7 R07 Rl) — O‘S(¢, RO; Rl)}

is bounded in 4.

e As a consequence, § has a fixed point, which is our

solution.




/ Theorem 2: Sketch of Proof \

o Letp(x,t) = ¢(x,t) — ¢*(x,t); define M, V,
and R similarly.

e Then

M = M(z,t,R(t)) — M(x,t, R*(t)).

e Thus, there is some 0 < A\ < 1 so that

6—M(x,t, AR(t) + (1 = MR (2))] |R(2)

M| <
"‘6}2

and so

|M(z,t)] < C|R(1)].
e Because R(t) — R(0) = fot fol M@ dz dt,

M(z,t)| < O / / (1816| + |M*)) dx ds
+ C|R(0)|.

. /




/ Theorem 2: Sketch of Proof \

e Thus

|M(x,t)|§0/0/0 M*3| da ds + C|R(0)|.

o Now R(t) — R(0) = [ [ M¢ dx dt, so

t 1
R(1)] < / / M 6| dy ds
M*o| dy d R(0
+/O/Or 3| dy ds + |R(0)]

® Thus
R(t) < C / / M*§| dx ds + C|R(0))
0 0

t ol
SC/ / z(1 — x)|¢| dx ds + C|R(0)|.
o Jo

\ where C' = C'(|| R, RTHCO[O,T] ) ”?b*HC([o,T];Bl))-/




/ Theorem 2: Sketch of Proof \

e Subtracting the equation for ¢* from the equation for

¢, taking inner products with ¢ and integrating, we

find
/Ot /Ol[a;u — 1)) dz ds

/le(l—a:)q52d:13t+
<C /0 (1 — ) de
—|—C/t/1:1:(1—x)¢2dwds
—1—0// (1 — x)me)* dx ds
+C’/O /o (z(1 — 2)v¢9)2 dx ds.




/ Theorem 2: Sketch of Proof \

e \We know

il < Gt AR + (1= VR 0)] 17
< C|R|;

similarly
7] + [7.] < C|R|.

e Thus we can use our estimate of | 2| to find

t+/0t/01[x(1—x)¢]idxds

< C’/ x(1 — x)¢g dx + C|R(0)]?
0

+C'/Ot/01:z:(1—a:)gb2da:ds.

K. Gronwall’s inequality completes the proof. /

/ r(1—x)p*dx
0




