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The Discrete Model

• Consider a single haploid panmictic population of

constant size N with n diallelic loci.

• Suppose that the two alleles at locus

i ∈ {1, . . . , n} are Ai and ai.

• The effect of allele Ai is greater than the effect of

allele ai.

• We assume that the difference in phenotype

between Ai and ai is Q, and that this is constant

across loci.

• We assume strict additivity, so that dominance and

epistasis are absent.
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The Discrete Model

• Let the fraction of the population with allele Ai at

locus i be denoted by xi.

• The population phenotypic mean is then

µ =
n∑

i=1

[
xi(

1
2
Q) + (1− xi)(−1

2
Q)

]

=
n∑

i=1

(
xi − 1

2

)
Q

up to a constant.

• We assume that the environment has a most fit

phenotype ropt, and that there is a fitness function of

the form

f(r) = e−κ(r−ropt)2

which gives the relative fitness of a phenotype r.
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The Discrete Model

• Given the population in one generation, we want to

find the probability pi that an individual in the next

generation will contain allele Ai.

• Clearly, pi ∝ xi.

• In addition, pi is proportional to the average fitness

of the population that carries Ai.

• The average phenotype µi of the population that

carries the allele Ai is µi = µ+ (1−Q)xi.

• The average phenotype νi of the population that

carries the allele ai is νi = µ−Qxi.

• Now pi ∝ xi and pi ∝ µi. On the other hand,

because the population size is fixed at N , we also

know (1− pi) ∝ (1−xi) and (1− pi) ∝ νi. Thus

pi =
xif(µ+ (1− xi)Q)

xif(µ+ (1− xi)Q) + (1− xi)f(µ− xiQ)
.
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The Discrete Model

• We could try to track each individual locus; this

results in a set of n nonlinear equations (one for

each locus), and little useful information can be

extracted when n is large.

• Rather than track each individual locus, we want to

look at the limit when n→∞, N →∞, and time

becomes continuous.

• We introduce the variable φ(x, t), chosen so that

∫ b

a

φ(x, t) dx

represents the fraction of loci whose allele frequency

is between a and b.

• This yields a mesoscale model that no longer tracks

the behavior of each individual locus.
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The Meoscale Model

• These models were initially developed by Richard

Hamilton, Judith Miller, and Mary Pugh.

– They have studied these models from a numerical

and from a formal asymptotic point of view.

– Model development continues.

• These models can be used to answer biologically

relevant questions:

– How fast does the trait mean approach optimal?

– At what rate are alleles fixed in the population?

• The problem is that basic mathematical questions-

like whether or not the model has a solution- have

not yet been answered.
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The Continuous Model

• We analyze the general system of equations of the

form

φt = −(Mφ)x + 1
2
(V φ)xx

where

M = M(x, t, R) = x(1− x)m(x, t, R),

V = V (x, t, R) = x(1− x)v(x, t, R).

• The function R(t) is defined by

R(t) =

∫ 1

0

(x− 1

2
)φ(x, t) dx+R0(t) +R1(t)

where

R0(t) = −1

4

∫ t

0

(V φ)x(0, s) ds+R0(0)

R1(t) = −1

4

∫ t

0

(V φ)x(1, s) ds+R1(0).
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Features of the Problem

• The problem is highly nonlinear.

– The coefficients of the equation M and V both

depend on R, which depends on the solution φ.

– Moreover, R also depends on the coefficient V

and so even if φ were known, there is still no

closed form expression for M or V .

• The problem is also non-local, as the coefficients M

and V depend on an integral of φ.

• R(t) represents the (suitably scaled) trait mean of

the population.

• R0(t) and R1(t) represent the effect of fixed loci on

the trait mean.
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The Results

• This problem has a solution.

• The solution is unique.

• The system is stable under perturbations of the

initial data.
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The Spaces Bi

• B0 =
{
ψ measurable on [0, 1] : 〈ψ, ψ〉2B0

<∞}

where

〈φ, ψ〉B0
=

∫ 1

0

x(1− x)φψ dx.

• B1 =
{
ψ ∈ B0 : 〈ψ, ψ〉2B1

<∞}
where

〈φ, ψ〉B1
= 〈φ, ψ〉B0

+

∫ 1

0

[x(1− x)φ]x[x(1− x)ψ]x dx.

• B2 =
{
ψ ∈ B1 : 〈ψ, ψ〉2B2

<∞}
where

〈φ, ψ〉B2
= 〈φ, ψ〉B1

+

∫ 1

0

x(1− x)[x(1− x)φ]xx

· [x(1− x)ψ]xx dx.
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Hypotheses: Coefficients

(H1) The functions

(x, t, R) 7→ m(x, t, R)

(x, t, R) 7→ v(x, r, R)

are continuous.

(H2) For any γ > 0, there exist constants

C(γ), C ′(γ) > 0 so that for |R| ≤ γ and for any

0 ≤ x ≤ 1 and t ≥ 0

v(x, t, R) ≥ C ′(γ),

|v|+ |vx|+ |vxx|+ |m|+ |mx| ≤ C(γ),

|mR|+ |vR|+ |vRx| ≤ C(γ).

(H3) There are nonnegative integrable functions

M1(t) andM2(t) so that

sup
0≤x≤1

|M(x, t, R)| ≤ M1(t) +M2(t)|R|.
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Hypotheses: Initial Data

• φ0 ∈ B1,

• φ0(x) ≥ 0 for almost every x,

• R0(0) and R1(0) are given, and

• T > 0 is given.
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Theorem 1: Existence

• Then there exists a function φ(x, t), so that

φ ∈C([0, T );B1)

∩ L2(0, T ;B2)

∩ Cα([0, T );Lp(0, 1))

∩ C((0, 1)× [0, T ))

for any 1 ≤ p < 2, for any 0 < α < 1
p
− 1

2
.

• There exist functions R0(t), R1(t) so that

R0, R1 ∈ Cβ[0, T )

for any 0 < β < 1
2
.

• Define

R(t) =

∫ 1

0

(x− 1
2
)φ(x, t) dx+R0(t) +R1(t).

Then R ∈ C1[0, T ).
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Theorem 1: Existence

• Then

φt = −(Mφ)x + 1
2
(V φ)xx

as elements of L2(0, T ;B0).

• Further,

lim
t↓0

φ(x, t) = φ0(x)

with the limit taken strongly in B1.

• Set

ν(x, t) =

∫ t

0

(V φ)x(x, s) ds.

Then ν ∈ Cα([0, T );C1− 1
p [0, 1]) for any

1 ≤ p < 2 and any 0 < α < 1
p
− 1

2
. Further

R0(t) = R0(0)− 1
4
ν(0, t),

R1(t) = R1(0)− 1
4
ν(1, t).
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Theorem 1: Existence

• There is a constant C depending only on T and

initial data so that

sup
0≤t<T

‖φ(·, t)‖B0
+ ‖φ‖L2(0,T ;B1) ≤ C ‖φ0‖B0

,

‖φ‖
C

1
2 ([0,T );B0)

≤ C ‖φ0‖B1
,

sup
0≤t<T

‖φ(·, t)‖B1
+ ‖φ‖L2(0,T ;B2) ≤ C ‖φ0‖B1

.

• For all x ∈ (0, 1) and for all 0 ≤ t < T we have

|φ(x, t)| ≤ Cmax

(
1√
x
,

1√
1− x

)
‖φ0‖B1

.

• For any 1 ≤ p < 2 and any 0 < α < 1
p
− 1

2

‖φ‖Cα([0,T );Lp(0,1)) ≤ C ‖φ0‖B1
,

‖ν‖
Cα([0,T );C

1− 1
p [0,1])

≤ C ‖φ0‖B1
;

where C also depends on p and α.
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Theorem 1: Existence

• Further, for any 0 < β < 1
2
,

‖R0‖Cβ [0,1] + ‖R1‖Cβ [0,1] ≤ C ‖φ0‖B1

where C also depends on β.

• Moreover, φ ≥ 0, and for any 0 ≤ t1 < t2 < T
∫ 1

0

φ(x, t2) dx ≤
∫ 1

0

φ(x, t1) dx.

• Finally

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds

]

exp

[
‖φ0‖L1(0,1)

∫ t

0

M2(s) ds

]

and

R(t2)−R(t1) =

∫ t2

t1

∫ 1

0

Mφ dx dt.
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Theorem 2: Uniqueness and Stability

• Let φ, φ∗ ∈ C([0, T ];B1) ∩ L2(0, T ;B2).

• Let R0, R
∗
0, R1, R

∗
1 ∈ C[0, T ].

• Define

R(t) =

∫ 1

0

(x− 1
2
)φ(x, t) +R0(t) +R1(t),

R∗(t) =

∫ 1

0

(x− 1
2
)φ∗(x, t) +R∗0(t) +R∗1(t).

• Define

M = M(x, t, R(t)),

M∗ = M(x, t, R∗(t),

V = V (x, t, R(t)),

V ∗ = V (x, t, R∗(t)).
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Theorem 2: Uniqueness and Stability

• Suppose that




φt = −(Mφ)x + 1
2
(V φ)xx,

φ
∣∣
t=0

= φ0 ∈ B1,

R(t)−R(0) =

∫ t

0

∫ 1

0

Mφ dx dt,

and



φ∗t = −(M∗φ∗)x + 1
2
(V ∗φ∗)xx,

φ∗
∣∣
t=0

= φ∗0 ∈ B1,

R∗(t)−R∗(0) =

∫ t

0

∫ 1

0

M∗φ∗ dx dt,

• If

R0(0)−R1(0) = R∗0(0)−R∗1(0)

φ0 = φ∗0

then φ∗ = φ.
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Theorem 2: Uniqueness and Stability

• There is a constant C depending only on initial data

and T so that

sup
0≤t≤T

∫ 1

0

x(1− x)(φ− φ∗)2 dx
∣∣∣
t

+

∫ T

0

∫ 1

0

[x(1− x)(φ− φ∗)]2x dx dt

≤ C

∫ 1

0

x(1− x)(φ0 − φ∗0)
2 dx

+

∫ 1

0

[x(1− x)(φ0 − φ∗0)]
2
x

+ C|R0(0)−R∗0(0)|2

+ C|R1(0)−R∗1(0)|2.
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Theorem 1: Sketch of Proof
Theory of the spaces B0, B1, and B2.

• C∞0 (0, 1) is dense in B0.

• If φ ∈ B1, then

x(1− x)φ ∈
◦
W 1

2(0, 1).

Further φ has a continuous representative with

x(1− x)φ ∈ C 1
2 [0, 1]

so that

|x1(1− x1)φ(x1)− x2(1− x2)φ(x2)|

≤ |x2 − x1| 12
(∫ 1

0

[x(1− x)φ(x)]2x dx

) 1
2

.
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Theorem 1: Sketch of Proof
Theory of B1.

• Let φ ∈ B1; then

sup
x∈[0,1]

x(1− x)φ2(x) ≤ 2

∫ 1

0

[x(1− x)φ]2x dy

• Let φ ∈ B1; then for any 0 < x < 1

|φ(x)| ≤ 2 max

(
1√
x
,

1√
1− x

)
‖φ‖B1

.

• For any 1 ≤ p < 2,

B1 ↪→ Lp

and there exists a constant C = C(p) so that if

φ ∈ B1 then

‖φ‖Lp
≤ C ‖φ‖B1

.

• C∞0 (0, 1) is dense in B1.
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Theorem 1: Sketch of Proof
Representation Theorem for B2.

• Suppose that φ ∈ B2. Then

φ(x) =
1

x(1− x)

∫ 1

0

G(x, y)[y(1− y)φ]yy dy.

where

G(x, y) =




x(y − 1) x ≤ y

(x− 1)y x ≥ y

is the Green’s function for the problem ψ′′ = 0,

ψ(0) = ψ(1) = 0.

0.2 0.4 0.6 0.8 1
x

-0.2

-0.15

-0.1

-0.05

GHx, 1
�����

3
L
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Theorem 1: Sketch of Proof
Theory of B2.

• We have the embedding

B2 ↪→ C
3
2

loc(0, 1).

• Let φ ∈ B2; then

∫ 1

0

x(1− x)φ2 dx

≤ 2

∫ 1

0

x(1− x)[x(1− x)φ]2xx dx,

and
∫ 1

0

[x(1− x)φ]2x

≤ 8

∫ 1

0

x(1− x)[x(1− x)φ]2xx dx.

• C∞[0, 1] is dense in B2.
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Theorem 1: Sketch of Proof
The Elements of B0, B1, and B2.

• It is easy to check that, for monomials f(x) = xp

– xp ∈ B0 iff p > −1,

– xp ∈ B1 iff p > −1/2, and

– xp ∈ B2 iff p > 0.

• As a consequence you might expect that if φ ∈ B2,

then [x(1− x)φ(x)]x → 0 as x→ 0 or x→ 1.

• This is important because V = x(1− x)v(x, t, R)

and

R0(t) = −1

4

∫ t

0

(V φ)x(0, s) ds+R0(0)

= −1

4

∫ t

0

(v x(1− x)φ)x(0, s) ds+R0(0).
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Theorem 1: Sketch of Proof
The Elements of B0, B1, and B2.

• Let ζ ∈ C∞[0, 1] be a smooth cutoff function

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

ΖHxL

• Then

f(x) =
ζ(x)

x(1− x)
Γ(p+ 1,− lnx)

is an element of B2, but

lim
x↓0

[x(1− x)f(x)]x = +∞.

• Here Γ(a, x) =
∫∞

x
ta−1e−t dt is the incomplete

gamma function.
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Theorem 1: Sketch of Proof
Compact Embeddings of B1.

• The embedding B1 ↪→ B0 is compact.

• The embedding B1 ↪→ Lp(0, 1) is compact.
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Theorem 1: Sketch of Proof
Eigenfunction Decomposition of B0 and B1.

There exists a sequence of eigenvalues λk and

eigenfunctions φk so that:

• The sequence λk is increasing with λk →∞,

• φk ∈ B2 ,

• −[x(1− x)φk]
′′ = λkφk,

• The set {φk}∞k=1 is an orthonormal basis for B0,

and

• The set {φk}∞k=1 forms a basis for B1.
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Theorem 1: Sketch of Proof
The Approximating Problem.

• Let T > 0, and choose

φ̃ ∈ C([0, T );L1(0, 1)),

R̃0, R̃1 ∈ C[0, T ).

• Define

R̃(t) =

∫ 1

0

(
x− 1

2

)
φ̃(x, t) dx+ R̃0(t) + R̃1(t)

• There is a constant

γ = γ

(∥∥∥φ̃
∥∥∥

C([0,T );L1)
,
∥∥∥R̃0, R̃1

∥∥∥
C0

)

so that |R̃(t)| ≤ γ.
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Theorem 1: Sketch of Proof
The Approximating Problem.

• Consider the approximating problem

φt = −(M(x, t, R̃(t))φ(x, t))x

+ 1
2
(V (x, t, R̃(t))φ(x, t))xx

φ
∣∣
t=0

= φ0(x).

• We need to show that:

– This problem has a solution (φ,R0, R1), and

– The resulting map

F : (φ̃, R̃0, R̃1) → (φ,R0, R1)

has a fixed point.
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Theorem 1: Sketch of Proof
The Approximating Problem.

• Choose φ0 with ‖φ0‖B0
<∞.

• Then there exists a unique function

φ ∈ C([0, T );B0) ∩ L2(0, T ;B1)

so that

φt = −(Mφ)x + 1
2
(V φ)xx

φ
∣∣
t=0

= φ0(x).

• Moreover there is a constant C = C(γ, T ) so that

sup
0≤t≤T

∫ 1

0

x(1− x)φ2 dx

+

∫ T

0

∫ 1

0

[x(1− x)φ]2x dx dt

≤ C ‖φ0‖2
B0
.
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Theorem 1: Sketch of Proof
The Approximating Problem.

• Further, if ‖φ0‖B1
<∞, then

φ ∈ C([0, T );B1) ∩ L2(0, T ;B2)

and

sup
0≤t≤T

∫ 1

0

[x(1− x)φ]2x dx

+

∫ T

0

∫ 1

0

x(1− x)[x(1− x)φ]2xx dx dt

≤ C ‖φ0‖2
B1

where again C depends only on γ and T .
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Theorem 1: Sketch of Proof
Regularity of the Approximating Problem Depending on γ.

• x(1− x)φ ∈ C([0, T );C
1
2 [0, 1]),

• φ ∈ Cloc((0, 1)× [0, T )),

• φt ∈ L2(0, T ;B0).

• There is a constant C depending only on γ and T

so that

sup
0≤t<T

|φ(x, t)|

≤ Cmax

(
1√
x
,

1√
x− 1

)
‖φ0‖B1

.

• For any 1 ≤ p < 2, there is a constant C

depending only on γ, T and p so that

sup
0≤t<T

‖φ(·, t)‖Lp(0,1) ≤ C ‖φ0‖B1
.
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Theorem 1: Sketch of Proof
Regularity of the Approximating Problem in Time

• φ ∈ C1/2([0, T );B0) and

‖φ(·, t2)− φ(·, t1)‖B0
≤ C|t2 − t1| 12 ‖φ0‖B1

.

for C = C(γ, T ).

• φ ∈ Cα([0, T );Lp) and

‖φ(·, t2)− φ(·, t1)‖Lp
≤ C|t2 − t1|α ‖φ0‖B1

for any 1 ≤ p < 2, and any 0 < α < 1
p
− 1

2
, where

C = C(γ, T, p, α).
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Theorem 1: Sketch of Proof
Regularity of Boundary Terms for the Approximating Problem

• Define ν(x, t) =

∫ t

0

(V φ)x(x, s) ds.

• Then ν, νt ∈ L∞(0, T ;L2) and

sup
0≤t<T

{
‖ν(·, t)‖L2(0,1) +

∥∥∥∥
∂ν

∂t
(·, t)

∥∥∥∥
L2(0,1)

}

≤ C ‖φ0‖B1

for C = C(γ, T ).

• Further
∂ν

∂x
∈ Cα([0, T );Lp) and

∥∥∥∥
∂ν

∂x
(·, t2)− ∂ν

∂x
(·, t1)

∥∥∥∥
Lp

≤ C|t2−t1|α ‖φ0‖B1
.

for any 0 < α < 1
p
− 1

2
where C = C(γ, T, α, p).
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Theorem 1: Sketch of Proof
Regularity of Boundary Terms for the Approximating Problem

• ν ∈ Cα([0, T );C1− 1
p [0, 1]) and

|ν(x2, t2)− ν(x1, t1)|
≤ C

{
|t2 − t1|α + |x2 − x1|1−

1
p

}
‖φ0‖B1

for any 1 ≤ p < 2 and any 0 < α < 1
p
− 1

2
where

C = C(γ, T, α, p).

• Finally, ν(0, t), ν(1, t) ∈ Cβ[0, T ) with

∣∣ν(0, t2)− ν(0, t1)
∣∣ ≤ C|t2 − t1|β ‖φ0‖B1∣∣ν(1, t2)− ν(1, t1)
∣∣ ≤ C|t2 − t1|β ‖φ0‖B1

for any 0 ≤ t1 < t2 < T and any 0 < β < 1
2

where C = C(γ, T, β).
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Theorem 1: Sketch of Proof
The Maximum Principle

• For any 0 ≤ t1 < t2 < T .
∫ 1

0

φ±(x, t2) dx ≤
∫ 1

0

φ±(x, t1) dx.

Proof Sketch: Use the test function

ψ = ± x(1− x)φ±

x(1− x)φ± + ε

on an interval [a, b] ⊂⊂ [0, 1]. Then the last term is

estimated

±
∫ t2

t1

∫ b

a

(V φ)xx
x(1− x)φ±

x(1− x)φ± + ε
dx dt

= ±
∫ t2

t1

(V φ)x
x(1− x)φ±

x(1− x)φ± + ε
dt

∣∣∣∣∣

x=b

x=a

−
∫ t2

t1

∫ b

a

(V φ±)x
ε[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt.
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Theorem 1: Sketch of Proof
The Maximum Principle

However V = x(1− x)v, so

∫ t2

t1

∫ b

a

(V φ±)x
ε[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt

=

∫ t2

t1

∫ b

a

v
ε[x(1− x)φ±]2x

(x(1− x)φ± + ε)2
dx dt

+

∫ t2

t1

∫ b

a

vx
εx(1− x)φ±[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt

Thus for almost every 0 < a < b < 1

∫ b

a

φ± dx

∣∣∣∣∣

t=t2

t=t1

≤
∫ t1

t1

∫ b

a

(Mφ±)x dx dt

±
∫ t2

t1

(V φ)xχ[φ± > 0] dt

∣∣∣∣∣

x=b

x=a

.
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Theorem 1: Sketch of Proof
The Maximum Principle

• φ ∈ L2(0, T ;B2) ↪→ L2(0, T ;C
3
2

loc(0, 1)), so

±(V φ)xχ[φ± > 0] is defined for all x, but it need

not be continuous.

• Define µ±(x) =

∫ t2

t1

(V φ±)(x, t) dt.

• Now µ± ∈ W 1
2 (0, 1) ↪→ C

1
2 [0, 1]; indeed

‖µ±‖W 1
2 (0,1) ≤ C ‖φ‖L2(0,T ;B1).

• µ(x) ≥ 0 and µ(0) = µ(1) = 0; indeed

µ±(x) =

∫ t2

t1

vx(1− x)φ± dt

≤ Cx(1−x) max

(
1√
x
,

1√
1− x

)
‖φ‖L2(0,T ;B1) .
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Theorem 1: Sketch of Proof
The Maximum Principle

• Then for any δ > 0

meas{x ∈ (0, δ) : µ±x (x) ≥ 0} > 0 and

meas{x ∈ (1− δ, 1) : µ±x (x) ≤ 0} > 0.

• As a consequence, we can find sequences an ↓ 0

and bn ↑ 1 so that

±
∫ t2

t1

(V φ)xχ[φ± > 0] dt

∣∣∣∣∣
x=an

≥ 0

±
∫ t2

t1

(V φ)xχ[φ± > 0] dt

∣∣∣∣∣
x=bn

≤ 0.

• Thus ∫ 1

0

φ±(x, t) dx

∣∣∣∣∣

t=t2

t=t1

≤ 0. ¥
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Theorem 1: Sketch of Proof
Estimates of R(t)

• Make the definitions

R0(t) = R0(0)− 1

4
ν(0, t)

R1(t) = R1(0)− 1

4
ν(1, t)

so that

R(t) =

∫ 1

0

(x− 1
2
)φ(x, t) dx+R0(t) +R1(t).

• Use (x− 1/2) as a test function to find that

R(t2)−R(t1) =

∫ t2

t1

∫ 1

0

Mφ dx dt.
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Theorem 1: Sketch of Proof
Estimates of R(t)

• Applying (H3) and the fact that

‖φ(·, t)‖L1(0,1) ≤ ‖φ0‖L1(0,1) ,

we find

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds

]

+ ‖φ0‖L1(0,1)

∫ t

0

M2(s)|R(s)| ds.

• Thus

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds

]

exp

[
‖φ0‖L1(0,1)

∫ t

0

M2(s) ds

]
.
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Theorem 1: Sketch of Proof
Compactness of the Solutions

• Suppose that

– {φn}∞n=1 ⊂ C([0, T );B1) ∩ Cα([0, T );L1)

– sup
0≤t<T

‖φn(·, t)‖B1
≤ C

– ‖φn(·, t2)− φn(·, t1)‖L1
≤ C|t2 − t1|α

for 0 < α < 1
2

and a constant C independent of n.

• Then there is a subsequence {φnj
}∞j=1 and a

function φ ∈ Cα([0, T );L1) so that

∥∥φnj
(·, t)− φ(·, t)

∥∥
L1
−→ 0

uniformly for t ∈ [0, T ).

• If α = 1
2
, then the conclusion holds true with B0 in

place of L1.
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Theorem 1: Sketch of Proof
The Fixed Point

• Define

U = C([0, T );L1(0, 1))× C[0, T )× C[0, T ).

• Consider the function F : U → U defined by the

rule

F(φ̃, R̃0, R̃1) = (φ,R0, R1)

where φ, R0, and R1 are the solutions to the

problem

R̃(t) =

∫ 1

0

(
x− 1

2

)
φ̃(x, t) dx+ R̃0(t) + R̃1(t)

φt = −(M(x, t, R̃(t))φ(x, t))x

+ 1
2
(V (x, t, R̃(t))φ(x, t))xx

φ
∣∣
t=0

= φ0(x).
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Theorem 1: Sketch of Proof
The Fixed Point

• The function F : U → U is continuous.

• The function F : U → U is compact.

• The set
{

(φ,R0, R1) ∈ U
∣∣∣∣∣
(φ,R0, R1) = σF(φ,R0, R1)

for some 0 ≤ σ ≤ 1

}

is bounded in U .

• As a consequence, F has a fixed point, which is our

solution.
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Theorem 2: Sketch of Proof

• Let φ̄(x, t) = φ(x, t)− φ∗(x, t); define M̄ , V̄ ,

and R̄ similarly.

• Then

M̄ = M(x, t, R(t))−M(x, t, R∗(t)).

• Thus, there is some 0 ≤ λ ≤ 1 so that

|M̄ | ≤
∣∣∣∣
∂M

∂R
(x, t, λR(t) + (1− λ)R∗(t))

∣∣∣∣ |R̄(t)|

and so

|M̄(x, t)| ≤ C|R̄(t)|.
• Because R(t)−R(0) =

∫ t

0

∫ 1

0
Mφ dx dt,

|M̄(x, t)| ≤ C

∫ t

0

∫ 1

0

(|M̄φ|+ |M∗φ̄|) dx ds
+ C|R̄(0)|.
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Theorem 2: Sketch of Proof

• Thus

|M̄(x, t)| ≤ C

∫ t

0

∫ 1

0

|M∗φ̄| dx ds+ C|R̄(0)|.

• Now R(t)−R(0) =
∫ t

0

∫ 1

0
Mφ dx dt, so

|R̄(t)| ≤
∫ t

0

∫ 1

0

|M̄φ| dy ds

+

∫ t

0

∫ 1

0

|M∗φ̄| dy ds+ |R̄(0)|

• Thus

|R̄(t)| ≤ C

∫ t

0

∫ 1

0

|M∗φ̄| dx ds+ C|R̄(0)|

≤ C

∫ t

0

∫ 1

0

x(1− x)|φ̄| dx ds+ C|R̄(0)|.

where C = C(‖R∗0, R∗1‖C0[0,T ] , ‖φ∗‖C([0,T ];B1)).
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Theorem 2: Sketch of Proof

• Subtracting the equation for φ∗ from the equation for

φ, taking inner products with φ̄ and integrating, we

find
∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
+

∫ t

0

∫ 1

0

[x(1− x)φ̄]2x dx ds

≤C
∫ 1

0

x(1− x)φ̄2
0 dx

+ C

∫ t

0

∫ 1

0

x(1− x)φ̄2 dx ds

+ C

∫ t

0

∫ 1

0

(x(1− x)m̄φ)2 dx ds

+ C

∫ t

0

∫ 1

0

(x(1− x)v̄φ)2
x dx ds.
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Theorem 2: Sketch of Proof

• We know

|m̄| ≤
∣∣∣∣
∂m

∂R
(x, t, λR(t) + (1− λ)R∗(t))

∣∣∣∣ |R̄|

≤ C|R̄|;

similarly

|v̄|+ |v̄x| ≤ C|R̄|.
• Thus we can use our estimate of |R̄| to find

∫ 1

0

x(1−x)φ̄2dx
∣∣∣
t
+

∫ t

0

∫ 1

0

[x(1−x)φ̄]2xdxds

≤ C

∫ 1

0

x(1− x)φ̄2
0 dx+ C|R̄(0)|2

+ C

∫ t

0

∫ 1

0

x(1− x)φ̄2 dx ds.

• Gronwall’s inequality completes the proof.
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