A Mesoscale Diffusion Model in Population Genetics with Dynamic Fitness

Mike O'Leary

Towson University

Judith R. Miller

Georgetown University

- Consider a single haploid panmictic population of constant size N with n diallelic loci.
- Suppose that the two alleles at locus $i \in \{1, \ldots, n\}$ are A_i and a_i .
- The effect of allele A_i is greater than the effect of allele a_i .
- We assume that the difference in phenotype between A_i and a_i is Q, and that this is constant across loci.
- We assume strict additivity, so that dominance and epistasis are absent.

- Let the fraction of the population with allele A_i at locus i be denoted by x_i .
- The population phenotypic mean is then

$$\mu = \sum_{i=1}^{n} \left[x_i (\frac{1}{2}Q) + (1 - x_i)(-\frac{1}{2}Q) \right]$$
$$= \sum_{i=1}^{n} \left(x_i - \frac{1}{2} \right) Q$$

up to a constant.

 We assume that the environment has a most fit phenotype r_{opt}, and that there is a fitness function of the form

$$f(r) = e^{-\kappa (r - r_{\text{opt}})^2}$$

which gives the relative fitness of a phenotype r.

- Given the population in one generation, we want to find the probability p_i that an individual in the next generation will contain allele A_i .
- Clearly, $p_i \propto x_i$.
- In addition, p_i is proportional to the average fitness of the population that carries A_i .
- The average phenotype μ_i of the population that carries the allele A_i is $\mu_i = \mu + (1 Q)x_i$.
- The average phenotype ν_i of the population that carries the allele a_i is $\nu_i = \mu Qx_i$.
- Now $p_i \propto x_i$ and $p_i \propto \mu_i$. On the other hand, because the population size is fixed at N, we also know $(1-p_i) \propto (1-x_i)$ and $(1-p_i) \propto \nu_i$. Thus

$$p_i = \frac{x_i f(\mu + (1 - x_i)Q)}{x_i f(\mu + (1 - x_i)Q) + (1 - x_i)f(\mu - x_iQ)}$$

- We could try to track each individual locus; this results in a set of *n* nonlinear equations (one for each locus), and little useful information can be extracted when *n* is large.
- Rather than track each individual locus, we want to look at the limit when $n \to \infty$, $N \to \infty$, and time becomes continuous.
- We introduce the variable $\phi(x, t)$, chosen so that

$$\int_{a}^{b} \phi(x,t) \, dx$$

represents the fraction of loci whose allele frequency is between a and b.

 This yields a mesoscale model that no longer tracks the behavior of each individual locus.

The Meoscale Model

- These models were initially developed by Richard Hamilton, Judith Miller, and Mary Pugh.
 - They have studied these models from a numerical and from a formal asymptotic point of view.
 - Model development continues.
- These models can be used to answer biologically relevant questions:
 - How fast does the trait mean approach optimal?
 - At what rate are alleles fixed in the population?
- The problem is that basic mathematical questionslike whether or not the model has a solution- have not yet been answered.

The Continuous Model

 We analyze the general system of equations of the form

$$\phi_t = -(M\phi)_x + \frac{1}{2}(V\phi)_{xx}$$

where

$$M = M(x, t, R) = x(1 - x)m(x, t, R),$$

$$V = V(x, t, R) = x(1 - x)v(x, t, R).$$

• The function R(t) is defined by

$$R(t) = \int_0^1 (x - \frac{1}{2})\phi(x, t) \, dx + R_0(t) + R_1(t)$$

where

$$R_0(t) = -\frac{1}{4} \int_0^t (V\phi)_x(0,s) \, ds + R_0(0)$$
$$R_1(t) = -\frac{1}{4} \int_0^t (V\phi)_x(1,s) \, ds + R_1(0).$$

Features of the Problem

- The problem is highly nonlinear.
 - The coefficients of the equation M and V both depend on R, which depends on the solution ϕ .
 - Moreover, R also depends on the coefficient V and so even if ϕ were known, there is still no closed form expression for M or V.
- The problem is also non-local, as the coefficients M and V depend on an integral of ϕ .
- R(t) represents the (suitably scaled) trait mean of the population.
- $R_0(t)$ and $R_1(t)$ represent the effect of fixed loci on the trait mean.

The Results

- This problem has a solution.
- The solution is unique.
- The system is stable under perturbations of the initial data.

The Spaces B_i

• $B_0 = \left\{\psi \text{ measurable on } [0,1]: \langle\psi,\psi\rangle_{B_0}^2 < \infty \right\}$ where

$$\langle \phi, \psi \rangle_{B_0} = \int_0^1 x(1-x)\phi\psi \, dx.$$

• $B_1 = \{ \psi \in B_0 : \langle \psi, \psi \rangle_{B_1}^2 < \infty \}$ where

$$\begin{aligned} \langle \phi, \psi \rangle_{B_1} &= \langle \phi, \psi \rangle_{B_0} \\ &+ \int_0^1 [x(1-x)\phi]_x [x(1-x)\psi]_x \, dx. \end{aligned}$$

• $B_2 = \{ \psi \in B_1 : \langle \psi, \psi \rangle_{B_2}^2 < \infty \}$ where

$$\begin{aligned} \langle \phi, \psi \rangle_{B_2} &= \langle \phi, \psi \rangle_{B_1} \\ &+ \int_0^1 x(1-x) [x(1-x)\phi]_{xx} \\ &\cdot [x(1-x)\psi]_{xx} \, dx. \end{aligned}$$

Hypotheses: Coefficients

(H1) The functions

$$(x, t, R) \mapsto m(x, t, R)$$

 $(x, t, R) \mapsto v(x, r, R)$

are continuous.

(H2) For any $\gamma > 0$, there exist constants $C(\gamma), C'(\gamma) > 0$ so that for $|R| \le \gamma$ and for any $0 \le x \le 1$ and $t \ge 0$

$$v(x, t, R) \ge C'(\gamma),$$

$$|v| + |v_x| + |v_{xx}| + |m| + |m_x| \le C(\gamma),$$

$$|m_R| + |v_R| + |v_{Rx}| \le C(\gamma).$$

(H3) There are nonnegative integrable functions $\mathcal{M}_1(t)$ and $\mathcal{M}_2(t)$ so that

$$\sup_{0 \le x \le 1} |M(x,t,R)| \le \mathcal{M}_1(t) + \mathcal{M}_2(t)|R|.$$

Hypotheses: Initial Data

- $\phi_0 \in B_1$,
- $\phi_0(x) \ge 0$ for almost every x,
- $R_0(0)$ and $R_1(0)$ are given, and
- T > 0 is given.

• Then there exists a function $\phi(x,t)$, so that

$$\phi \in C([0, T); B_1)$$

$$\cap L_2(0, T; B_2)$$

$$\cap C^{\alpha}([0, T); L_p(0, 1))$$

$$\cap C((0, 1) \times [0, T))$$

for any $1 \le p < 2$, for any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$.

• There exist functions $R_0(t)$, $R_1(t)$ so that

$$R_0, R_1 \in C^\beta[0, T)$$

for any $0 < \beta < \frac{1}{2}$.

• Define

$$R(t) = \int_0^1 (x - \frac{1}{2})\phi(x, t) \, dx + R_0(t) + R_1(t).$$

Then $R \in C^1[0, T).$

Then $\nu \in C^{\alpha}([0,T); C^{1-\frac{1}{p}}[0,1])$ for any $1 \leq p < 2$ and any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$. Further $R_0(t) = R_0(0) - \frac{1}{4}\nu(0,t),$ $R_1(t) = R_1(0) - \frac{1}{4}\nu(1,t).$

Theorem 1: Existence

 $\bullet\,$ There is a constant C depending only on T and initial data so that

$$\sup_{0 \le t < T} \|\phi(\cdot, t)\|_{B_0} + \|\phi\|_{L_2(0,T;B_1)} \le C \|\phi_0\|_{B_0},$$
$$\|\phi\|_{C^{\frac{1}{2}}([0,T);B_0)} \le C \|\phi_0\|_{B_1},$$
$$\sup_{0 \le t < T} \|\phi(\cdot, t)\|_{B_1} + \|\phi\|_{L_2(0,T;B_2)} \le C \|\phi_0\|_{B_1}.$$

• For all $x \in (0, 1)$ and for all $0 \le t < T$ we have

$$|\phi(x,t)| \le C \max\left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{1-x}}\right) \|\phi_0\|_{B_1}.$$

• For any $1 \leq p < 2$ and any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$

$$\|\phi\|_{C^{\alpha}([0,T);L_{p}(0,1))} \leq C \|\phi_{0}\|_{B_{1}},$$

$$\|\nu\|_{C^{\alpha}([0,T);C^{1-\frac{1}{p}}[0,1])} \leq C \|\phi_{0}\|_{B_{1}};$$

where C also depends on p and $\alpha.$

and

$$R(t_2) - R(t_1) = \int_{t_1}^{t_2} \int_0^1 M\phi \, dx \, dt.$$

Theorem 2: Uniqueness and Stability

- Let $\phi, \phi^* \in C([0,T]; B_1) \cap L_2(0,T; B_2).$
- Let $R_0, R_0^*, R_1, R_1^* \in C[0, T]$.
- Define

$$R(t) = \int_0^1 (x - \frac{1}{2})\phi(x, t) + R_0(t) + R_1(t),$$

$$R^*(t) = \int_0^1 (x - \frac{1}{2})\phi^*(x, t) + R_0^*(t) + R_1^*(t).$$

Define

$$M = M(x, t, R(t)),$$

$$M^* = M(x, t, R^*(t),$$

$$V = V(x, t, R(t)),$$

$$V^* = V(x, t, R^*(t)).$$

Theorem 2: Uniqueness and Stability

Suppose that

$$\begin{cases} \phi_t = -(M\phi)_x + \frac{1}{2}(V\phi)_{xx}, \\ \phi\big|_{t=0} = \phi_0 \in B_1, \\ R(t) - R(0) = \int_0^t \int_0^1 M\phi \, dx \, dt, \end{cases}$$

and

$$\begin{cases} \phi_t^* = -(M^*\phi^*)_x + \frac{1}{2}(V^*\phi^*)_{xx}, \\ \phi^*|_{t=0} = \phi_0^* \in B_1, \\ R^*(t) - R^*(0) = \int_0^t \int_0^1 M^*\phi^* \, dx \, dt, \end{cases}$$

• If

$$R_0(0) - R_1(0) = R_0^*(0) - R_1^*(0)$$
$$\phi_0 = \phi_0^*$$

then $\phi^* = \phi$.

Theorem 2: Uniqueness and Stability

• There is a constant C depending only on initial data and T so that

$$\sup_{0 \le t \le T} \int_0^1 x(1-x)(\phi - \phi^*)^2 dx \Big|_t$$

+ $\int_0^T \int_0^1 [x(1-x)(\phi - \phi^*)]_x^2 dx dt$
 $\le C \int_0^1 x(1-x)(\phi_0 - \phi_0^*)^2 dx$
+ $\int_0^1 [x(1-x)(\phi_0 - \phi_0^*)]_x^2$
+ $C|R_0(0) - R_0^*(0)|^2$
+ $C|R_1(0) - R_1^*(0)|^2.$

Theorem 1: Sketch of Proof Theory of the spaces B_0 , B_1 , and B_2 .

- $C_0^{\infty}(0,1)$ is dense in B_0 .
- If $\phi \in B_1$, then

$$x(1-x)\phi \in \overset{\circ}{W}{}_{2}^{1}(0,1).$$

Further ϕ has a continuous representative with

$$x(1-x)\phi \in C^{\frac{1}{2}}[0,1]$$

so that

$$|x_1(1-x_1)\phi(x_1) - x_2(1-x_2)\phi(x_2)|$$

$$\leq |x_2 - x_1|^{\frac{1}{2}} \left(\int_0^1 [x(1-x)\phi(x)]_x^2 \, dx \right)^{\frac{1}{2}}$$

Theorem 1: Sketch of Proof Theory of B_1 .

• Let $\phi \in B_1$; then

$$\sup_{x \in [0,1]} x(1-x)\phi^2(x) \le 2\int_0^1 [x(1-x)\phi]_x^2 \, dy$$

• Let $\phi \in B_1$; then for any 0 < x < 1

$$|\phi(x)| \le 2 \max\left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{1-x}}\right) \|\phi\|_{B_1}.$$

• For any $1 \leq p < 2$,

$$B_1 \hookrightarrow L_p$$

and there exists a constant C = C(p) so that if $\phi \in B_1$ then

$$\|\phi\|_{L_p} \le C \|\phi\|_{B_1}$$
.

• $C_0^{\infty}(0,1)$ is dense in B_1 .

Theorem 1: Sketch of Proof Representation Theorem for B_2 .

• Suppose that $\phi \in B_2$. Then

$$\phi(x) = \frac{1}{x(1-x)} \int_0^1 G(x,y) [y(1-y)\phi]_{yy} \, dy.$$

where

$$G(x,y) = \begin{cases} x(y-1) & x \le y \\ (x-1)y & x \ge y \end{cases}$$

is the Green's function for the problem $\psi''=0$, $\psi(0)=\psi(1)=0.$

Theorem 1: Sketch of Proof Theory of B_2 . We have the embedding $B_2 \hookrightarrow C^{\frac{3}{2}}_{\text{loc}}(0,1).$ Let $\phi \in B_2$; then $\int_{0}^{1} x(1-x)\phi^2 \, dx$ $\leq 2 \int_{0}^{1} x(1-x) [x(1-x)\phi]_{xx}^{2} dx,$ and

$$\int_0^1 [x(1-x)\phi]_x^2$$

\$\le 8 \int_0^1 x(1-x)[x(1-x)\phi]_{xx}^2 dx.\$

• $C^{\infty}[0,1]$ is dense in B_2 .

1

Theorem 1: Sketch of Proof The Elements of B_0 , B_1 , and B_2 .

• It is easy to check that, for monomials $f(x) = x^p$

–
$$x^p \in B_0$$
 iff $p > -1$,

-
$$x^p \in B_1$$
 iff $p > -1/2$, and

- $-x^p \in B_2 \text{ iff } p > 0.$
- As a consequence you might expect that if $\phi \in B_2$, then $[x(1-x)\phi(x)]_x \to 0$ as $x \to 0$ or $x \to 1$.
- This is important because V = x(1-x)v(x,t,R) and

$$R_0(t) = -\frac{1}{4} \int_0^t (V\phi)_x(0,s) \, ds + R_0(0)$$

= $-\frac{1}{4} \int_0^t (v \, x(1-x)\phi)_x(0,s) \, ds + R_0(0).$

Theorem 1: Sketch of Proof Compact Embeddings of B_1 .

- The embedding $B_1 \hookrightarrow B_0$ is compact.
- The embedding $B_1 \hookrightarrow L_p(0,1)$ is compact.

Theorem 1: Sketch of Proof Eigenfunction Decomposition of B_0 and B_1 .

There exists a sequence of eigenvalues λ_k and eigenfunctions ϕ_k so that:

• The sequence λ_k is increasing with $\lambda_k \to \infty$,

•
$$\phi_k \in B_2$$
 ,

•
$$-[x(1-x)\phi_k]'' = \lambda_k \phi_k$$
,

- The set $\{\phi_k\}_{k=1}^\infty$ is an orthonormal basis for B_0 , and
- The set $\{\phi_k\}_{k=1}^{\infty}$ forms a basis for B_1 .

The Approximating Problem.

• Let T > 0, and choose

$$\tilde{\phi} \in C([0,T); L_1(0,1)),$$

 $\tilde{R}_0, \tilde{R}_1 \in C[0,T).$

• Define

$$\tilde{R}(t) = \int_0^1 \left(x - \frac{1}{2}\right) \tilde{\phi}(x, t) \, dx + \tilde{R}_0(t) + \tilde{R}_1(t)$$

• There is a constant

$$\gamma = \gamma \left(\left\| \tilde{\phi} \right\|_{C([0,T);L_1)}, \left\| \tilde{R}_0, \tilde{R}_1 \right\|_{C^0} \right)$$

so that $|\tilde{R}(t)| \leq \gamma$.

The Approximating Problem.

Consider the approximating problem

$$\phi_t = -(M(x, t, \tilde{R}(t))\phi(x, t))_x$$
$$+ \frac{1}{2}(V(x, t, \tilde{R}(t))\phi(x, t))_{xx}$$
$$\phi\big|_{t=0} = \phi_0(x).$$

• We need to show that:

– This problem has a solution (ϕ, R_0, R_1) , and

- The resulting map

$$\mathfrak{F}: (\tilde{\phi}, \tilde{R}_0, \tilde{R}_1) \to (\phi, R_0, R_1)$$

has a fixed point.

Theorem 1: Sketch of Proof The Approximating Problem.

- Choose ϕ_0 with $\|\phi_0\|_{B_0} < \infty$.
- Then there exists a unique function

$$\phi \in C([0,T); B_0) \cap L_2(0,T; B_1)$$

so that

$$\phi_t = -(M\phi)_x + \frac{1}{2}(V\phi)_{xx}$$
$$\phi\big|_{t=0} = \phi_0(x).$$

• Moreover there is a constant $C = C(\gamma, T)$ so that

$$\sup_{0 \le t \le T} \int_0^1 x(1-x)\phi^2 dx + \int_0^T \int_0^1 [x(1-x)\phi]_x^2 dx dt \le C \|\phi_0\|_{B_0}^2.$$

The Approximating Problem.

• Further, if $\|\phi_0\|_{B_1} < \infty$, then

 $\phi \in C([0,T); B_1) \cap L_2(0,T; B_2)$

and

$$\sup_{0 \le t \le T} \int_0^1 [x(1-x)\phi]_x^2 dx + \int_0^T \int_0^1 x(1-x) [x(1-x)\phi]_{xx}^2 dx dt \le C \|\phi_0\|_{B_1}^2$$

where again C depends only on γ and T.

Theorem 1: Sketch of Proof Regularity of the Approximating Problem Depending on γ . • $x(1-x)\phi \in C([0,T); C^{\frac{1}{2}}[0,1]),$ • $\phi \in C_{\text{loc}}((0,1) \times [0,T)),$ • $\phi_t \in L_2(0,T; B_0).$

- There is a constant C depending only on γ and T so that

$$\sup_{0 \le t < T} |\phi(x, t)|$$
$$\le C \max\left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{x-1}}\right) \|\phi_0\|_{B_1}$$

• For any $1 \le p < 2$, there is a constant C depending only on γ , T and p so that

$$\sup_{0 \le t < T} \|\phi(\cdot, t)\|_{L_p(0,1)} \le C \|\phi_0\|_{B_1}.$$

Theorem 1: Sketch of Proof
Regularity of the Approximating Problem in Time
•
$$\phi \in C^{1/2}([0,T); B_0)$$
 and
 $\|\phi(\cdot,t_2) - \phi(\cdot,t_1)\|_{B_0} \leq C|t_2 - t_1|^{\frac{1}{2}} \|\phi_0\|_{B_1}$.
for $C = C(\gamma, T)$.
• $\phi \in C^{\alpha}([0,T); L_p)$ and
 $\|\phi(\cdot,t_2) - \phi(\cdot,t_1)\|_{L_p} \leq C|t_2 - t_1|^{\alpha} \|\phi_0\|_{B_1}$
for any $1 \leq p < 2$, and any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$, where
 $C = C(\gamma, T, p, \alpha)$.

Theorem 1: Sketch of Proof

Regularity of Boundary Terms for the Approximating Problem

• Define
$$\nu(x,t) = \int_0^t (V\phi)_x(x,s) \, ds.$$

• Then $u,
u_t \in L_\infty(0,T;L_2)$ and

$$\sup_{0 \le t < T} \left\{ \left\| \nu(\cdot, t) \right\|_{L_2(0,1)} + \left\| \frac{\partial \nu}{\partial t}(\cdot, t) \right\|_{L_2(0,1)} \right\}$$
$$\le C \left\| \phi_0 \right\|_{B_1}$$

for
$$C = C(\gamma, T)$$
.

• Further
$$\frac{\partial \nu}{\partial x} \in C^{\alpha}([0,T);L_p)$$
 and

$$\left\|\frac{\partial\nu}{\partial x}(\cdot,t_2) - \frac{\partial\nu}{\partial x}(\cdot,t_1)\right\|_{L_p} \le C|t_2 - t_1|^{\alpha} \|\phi_0\|_{B_1}.$$

for any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$ where $C = C(\gamma, T, \alpha, p)$.

$$\begin{aligned} & \text{Theorem 1: Sketch of Proof} \\ \text{Regularity of Boundary Terms for the Approximating Problem} \\ \bullet \ \nu \in C^{\alpha}([0,T); C^{1-\frac{1}{p}}[0,1]) \text{ and} \\ & |\nu(x_2,t_2) - \nu(x_1,t_1)| \\ & \leq C \left\{ |t_2 - t_1|^{\alpha} + |x_2 - x_1|^{1-\frac{1}{p}} \right\} \|\phi_0\|_{B_1} \\ & \text{for any } 1 \leq p < 2 \text{ and any } 0 < \alpha < \frac{1}{p} - \frac{1}{2} \text{ where} \\ & C = C(\gamma,T,\alpha,p). \end{aligned} \\ \bullet \text{ Finally, } \nu(0,t), \nu(1,t) \in C^{\beta}[0,T) \text{ with} \\ & \left| \nu(0,t_2) - \nu(0,t_1) \right| \leq C |t_2 - t_1|^{\beta} \|\phi_0\|_{B_1} \\ & \left| \nu(1,t_2) - \nu(1,t_1) \right| \leq C |t_2 - t_1|^{\beta} \|\phi_0\|_{B_1} \\ & \text{ for any } 0 \leq t_1 < t_2 < T \text{ and any } 0 < \beta < \frac{1}{2} \\ & \text{ where } C = C(\gamma,T,\beta). \end{aligned}$$

• For any $0 \le t_1 < t_2 < T$.

$$\int_0^1 \phi^{\pm}(x, t_2) \, dx \le \int_0^1 \phi^{\pm}(x, t_1) \, dx.$$

Proof Sketch: Use the test function

$$\psi = \pm \frac{x(1-x)\phi^{\pm}}{x(1-x)\phi^{\pm} + \epsilon}$$

on an interval $[a, b] \subset [0, 1]$. Then the last term is estimated

$$\pm \int_{t_1}^{t_2} \int_a^b (V\phi)_{xx} \frac{x(1-x)\phi^{\pm}}{x(1-x)\phi^{\pm} + \epsilon} \, dx \, dt = \pm \int_{t_1}^{t_2} (V\phi)_x \frac{x(1-x)\phi^{\pm}}{x(1-x)\phi^{\pm} + \epsilon} \, dt \bigg|_{x=a}^{x=b} - \int_{t_1}^{t_2} \int_a^b (V\phi^{\pm})_x \frac{\epsilon [x(1-x)\phi^{\pm}]_x}{(x(1-x)\phi^{\pm} + \epsilon)^2} \, dx \, dt.$$

However V = x(1-x)v, so

$$\int_{t_1}^{t_2} \int_a^b (V\phi^{\pm})_x \frac{\epsilon [x(1-x)\phi^{\pm}]_x}{(x(1-x)\phi^{\pm}+\epsilon)^2} \, dx \, dt$$
$$= \int_{t_1}^{t_2} \int_a^b v \frac{\epsilon [x(1-x)\phi^{\pm}]_x^2}{(x(1-x)\phi^{\pm}+\epsilon)^2} \, dx \, dt$$
$$+ \int_{t_1}^{t_2} \int_a^b v_x \frac{\epsilon x(1-x)\phi^{\pm} [x(1-x)\phi^{\pm}]_x}{(x(1-x)\phi^{\pm}+\epsilon)^2} \, dx \, dt$$

Thus for almost every 0 < a < b < 1

$$\int_{a}^{b} \phi^{\pm} dx \bigg|_{t=t_{1}}^{t=t_{2}} \leq \int_{t_{1}}^{t_{1}} \int_{a}^{b} (M\phi^{\pm})_{x} dx dt$$
$$\pm \int_{t_{1}}^{t_{2}} (V\phi)_{x} \chi[\phi^{\pm} > 0] dt \bigg|_{x=a}^{x=b}$$

• $\phi \in L_2(0,T;B_2) \hookrightarrow L_2(0,T;C^{\frac{3}{2}}_{loc}(0,1))$, so $\pm (V\phi)_x \chi[\phi^{\pm} > 0]$ is defined for all x, but it need not be continuous.

• Define
$$\mu^{\pm}(x) = \int_{t_1}^{t_2} (V\phi^{\pm})(x,t) dt.$$

- Now $\mu^{\pm} \in W_2^1(0,1) \hookrightarrow C^{\frac{1}{2}}[0,1]$; indeed $\|\mu^{\pm}\|_{W_2^1(0,1)} \leq C \|\phi\|_{L_2(0,T;B_1)}.$
- $\mu(x) \ge 0$ and $\mu(0) = \mu(1) = 0$; indeed

$$\mu^{\pm}(x) = \int_{t_1}^{t_2} vx(1-x)\phi^{\pm} dt$$

$$\leq Cx(1-x) \max\left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{1-x}}\right) \|\phi\|_{L_2(0,T;B_1)}.$$

• Then for any $\delta > 0$

$$\max\{x \in (0, \delta) : \mu_x^{\pm}(x) \ge 0\} > 0 \text{ and}$$
$$\max\{x \in (1 - \delta, 1) : \mu_x^{\pm}(x) \le 0\} > 0.$$

• As a consequence, we can find sequences $a_n \downarrow 0$ and $b_n \uparrow 1$ so that

$$\pm \int_{t_1}^{t_2} (V\phi)_x \chi[\phi^{\pm} > 0] dt \bigg|_{x=a_n} \ge 0$$

$$\pm \int_{t_1}^{t_2} (V\phi)_x \chi[\phi^{\pm} > 0] dt \bigg|_{x=b_n} \le 0.$$

• Thus

$$\int_{0}^{1} \phi^{\pm}(x,t) \, dx \bigg|_{t=t_{1}}^{t=t_{2}} \le 0. \quad \blacksquare$$

Theorem 1: Sketch of Proof Estimates of R(t)

• Make the definitions

$$R_0(t) = R_0(0) - \frac{1}{4}\nu(0,t)$$
$$R_1(t) = R_1(0) - \frac{1}{4}\nu(1,t)$$

so that

$$R(t) = \int_0^1 (x - \frac{1}{2})\phi(x, t) \, dx + R_0(t) + R_1(t).$$

• Use (x - 1/2) as a test function to find that

$$R(t_2) - R(t_1) = \int_{t_1}^{t_2} \int_0^1 M\phi \, dx \, dt.$$

Theorem 1: Sketch of Proof Estimates of R(t)

• Applying (H3) and the fact that

$$\|\phi(\cdot,t)\|_{L_1(0,1)} \le \|\phi_0\|_{L_1(0,1)},$$

we find

$$|R(t)| \leq \left[|R(0)| + \|\phi_0\|_{L_1(0,1)} \int_0^t \mathcal{M}_1(s) \, ds \right] \\ + \|\phi_0\|_{L_1(0,1)} \int_0^t \mathcal{M}_2(s) |R(s)| \, ds.$$

Thus

$$|R(t)| \leq \left[|R(0)| + \|\phi_0\|_{L_1(0,1)} \int_0^t \mathcal{M}_1(s) \, ds \right]$$
$$\exp\left[\|\phi_0\|_{L_1(0,1)} \int_0^t \mathcal{M}_2(s) \, ds \right].$$

Theorem 1: Sketch of Proof Compactness of the Solutions

Suppose that

- $\{\phi_n\}_{n=1}^{\infty} \subset C([0,T); B_1) \cap C^{\alpha}([0,T); L_1)$
- $-\sup_{0 \le t < T} \|\phi_n(\cdot, t)\|_{B_1} \le C$
- $\|\phi_n(\cdot, t_2) \phi_n(\cdot, t_1)\|_{L_1} \le C |t_2 t_1|^{\alpha}$

for $0 < \alpha < \frac{1}{2}$ and a constant C independent of n.

• Then there is a subsequence $\{\phi_{n_j}\}_{j=1}^{\infty}$ and a function $\phi \in C^{\alpha}([0,T);L_1)$ so that

$$\left\|\phi_{n_j}(\cdot,t) - \phi(\cdot,t)\right\|_{L_1} \longrightarrow 0$$

uniformly for $t \in [0, T)$.

• If $\alpha = \frac{1}{2}$, then the conclusion holds true with B_0 in place of L_1 .

Theorem 1: Sketch of Proof The Fixed Point

• Define

 $\mathcal{U} = C([0,T); L_1(0,1)) \times C[0,T) \times C[0,T).$

• Consider the function $\mathfrak{F}:\mathcal{U} \to \mathcal{U}$ defined by the rule

$$\mathfrak{F}(\tilde{\phi}, \tilde{R}_0, \tilde{R}_1) = (\phi, R_0, R_1)$$

where ϕ , R_0 , and R_1 are the solutions to the problem

$$\tilde{R}(t) = \int_0^1 \left(x - \frac{1}{2} \right) \tilde{\phi}(x, t) \, dx + \tilde{R}_0(t) + \tilde{R}_1(t)$$

$$\phi_t = -(M(x, t, \tilde{R}(t))\phi(x, t))_x$$

$$+ \frac{1}{2} (V(x, t, \tilde{R}(t))\phi(x, t))_{xx}$$

$$\phi \Big|_{t=0} = \phi_0(x).$$

Theorem 1: Sketch of Proof The Fixed Point

- The function $\mathfrak{F}:\mathcal{U}\to\mathcal{U}$ is continuous.
- The function $\mathfrak{F}:\mathcal{U}\to\mathcal{U}$ is compact.

The set

$$\left\{ \left. (\phi, R_0, R_1) \in \mathcal{U} \right| \begin{array}{l} (\phi, R_0, R_1) = \sigma \mathfrak{F}(\phi, R_0, R_1) \\ \text{for some } 0 \le \sigma \le 1 \end{array} \right\}$$

is bounded in \mathcal{U} .

• As a consequence, \mathfrak{F} has a fixed point, which is our solution.

Theorem 2: Sketch of Proof

- Let $\bar{\phi}(x,t) = \phi(x,t) \phi^*(x,t)$; define \bar{M} , \bar{V} , and \bar{R} similarly.
- Then

$$\overline{M} = M(x, t, R(t)) - M(x, t, R^*(t)).$$

• Thus, there is some $0 \leq \lambda \leq 1$ so that

$$|\bar{M}| \le \left|\frac{\partial M}{\partial R}(x,t,\lambda R(t) + (1-\lambda)R^*(t))\right| |\bar{R}(t)|$$

and so

$$|\bar{M}(x,t)| \le C|\bar{R}(t)|.$$

• Because $R(t) - R(0) = \int_0^t \int_0^1 M\phi \, dx \, dt$,

$$|\bar{M}(x,t)| \le C \int_0^t \int_0^1 (|\bar{M}\phi| + |M^*\bar{\phi}|) \, dx \, ds + C|\bar{R}(0)|.$$

• Thus

$$|\bar{M}(x,t)| \le C \int_0^t \int_0^1 |M^*\bar{\phi}| \, dx \, ds + C|\bar{R}(0)|.$$

• Now $R(t) - R(0) = \int_0^t \int_0^1 M\phi \, dx \, dt$, so

$$\begin{aligned} |\bar{R}(t)| &\leq \int_0^t \int_0^1 |\bar{M}\phi| \, dy \, ds \\ &+ \int_0^t \int_0^1 |M^*\bar{\phi}| \, dy \, ds + |\bar{R}(0)| \end{aligned}$$

Thus

$$\begin{split} |\bar{R}(t)| &\leq C \int_0^t \int_0^1 |M^*\bar{\phi}| \, dx \, ds + C |\bar{R}(0)| \\ &\leq C \int_0^t \int_0^1 x(1-x) |\bar{\phi}| \, dx \, ds + C |\bar{R}(0)|. \end{split}$$
 where $C = C(\|R_0^*, R_1^*\|_{C^0[0,T]}, \|\phi^*\|_{C([0,T];B_1)}).$

Theorem 2: Sketch of Proof

• Subtracting the equation for ϕ^* from the equation for ϕ , taking inner products with $\overline{\phi}$ and integrating, we find

$$\begin{split} \int_{0}^{1} x(1-x)\bar{\phi}^{2} dx \Big|_{t} &+ \int_{0}^{t} \int_{0}^{1} [x(1-x)\bar{\phi}]_{x}^{2} dx ds \\ &\leq C \int_{0}^{1} x(1-x)\bar{\phi}_{0}^{2} dx \\ &+ C \int_{0}^{t} \int_{0}^{1} x(1-x)\bar{\phi}^{2} dx ds \\ &+ C \int_{0}^{t} \int_{0}^{1} (x(1-x)\bar{m}\phi)^{2} dx ds \\ &+ C \int_{0}^{t} \int_{0}^{1} (x(1-x)\bar{w}\phi)_{x}^{2} dx ds. \end{split}$$

Theorem 2: Sketch of Proof

• We know

$$\begin{aligned} |\bar{m}| &\leq \left| \frac{\partial m}{\partial R}(x, t, \lambda R(t) + (1 - \lambda) R^*(t)) \right| \ |\bar{R}| \\ &\leq C |\bar{R}|; \end{aligned}$$

similarly

$$|\bar{v}| + |\bar{v}_x| \le C|\bar{R}|.$$

• Thus we can use our estimate of $|ar{R}|$ to find

$$\begin{split} \int_{0}^{1} x(1-x)\bar{\phi}^{2}dx\Big|_{t} + \int_{0}^{t} \int_{0}^{1} [x(1-x)\bar{\phi}]_{x}^{2}dxds \\ &\leq C \int_{0}^{1} x(1-x)\bar{\phi}_{0}^{2}dx + C|\bar{R}(0)|^{2} \\ &\quad + C \int_{0}^{t} \int_{0}^{1} x(1-x)\bar{\phi}^{2}dxds. \end{split}$$

Gronwall's inequality completes the proof.